Computational accelerator science needs towards laser-plasma accelerators for future colliders

C. G. R. Geddes, J.-L. Vay, C.B. Schroeder,

E. Esarey. W.P. Leemans

Lawrence Berkeley National Laboratory

Laser Plasma Accelerators : ≥ 10 GeV/m gradient to reduce size of future linacs

Laser Plasma Accelerators : ≥ 10 GeV/m gradient to reduce size of future linacs

Laser Plasma Accelerators : ≥ 10 GeV/m gradient to reduce size of future linacs

Laser Plasma Accelerators*: ≥ 10 GeV/m gradient to reduce size of future linacs

Space charge restoring force -> wakefield

$$T_{laser} < T_{plasma} \sim 50 fs$$

Accelerating fields ~ GeV per cm

Wake velocity ~ laser velocity

Laser Plasma Accelerators produce GeV beams with low emittance and ΔE

GeV beams in 3 cm capillary
→PW lasers such as BELLA¹ producing 2 GeV, targeting 10 GeV
Leemans et al, Nature Physics 2006

Controlled injection & performance

Gonsalves et al., Nature Physics 2011 Related: Faure Nature Physics 2006

0.1 mm-mrad normalized emittance

Plateau et al, PRL 108, 2012 Related: Weingartner PRL 2012

1% level integrated energy spread sub – 1% slice energy spread

Related: Lin et al, PRL 108, 2012

Experiments on staging of multiple modules to increase energy are in progress²

LPA Simulation: EM plasma, with gas dynamics, radiation/scattering

Time	Physics	Codes	Example
scale			

Laser-plasma interaction, focusing, ionization, depletion.
Injection/evolution of particle beams

EM Fluid, Particle-In-Cell

VORPAL, INF&RNO, ALaDyn, WARP, REMP Related: OSIRIS, QuickPIC, VLPL...

Core simulation: EM plasma scales well, models cm-scale GeV LPAs

Explicit PIC/fluid simulates core LPA physics

- Scale to >100kcore via domain decomposition
- Limits include area/volume and I/O scaling

For future high energy and high quality beams:

- Laser-to-plasma scale separation limits m-scale and beyond
- Accuracy issues: noise, numerical temperature, staggered grid

Plasma-physics based reduced models allow 10 GeV meter-scale simulations

Supported design of BELLA PW laser and collider concepts¹

Full scale required for correct emittance, focusing

Coupled with methods to reduce unphysical kinetic effects

High order particles, smoothing, controlled dispersion and push

Research focus: Physics/R&D challenges towards detailed conceptual design of a future collider

- Intermediate applications include FEL and Thomson gamma light sources
- Research needs detailed in Facilities group paper by J.P. Delahaye et al.

Physics capabilities for high-energy physics LPAs

Staging: order 100 LPAs, each of meter scale

Resolution of 10 nm – scale emittance

- Compact beam cooling methods
- Including scattering and radiation effects

Spin polarization and preservation

Positron production and acceleration/focusing

Compact final focus methods (e.g. adiabatic plasma lens)

LPA Simulation: EM plasma, with gas dynamics, radiation/scattering

Time scale	Physics	Codes	Example	
ms	Gas target formation: capillaries and gas jets	Gas dynamics- ANSYS, OpenFOAM		
ns	Plasma formation in capillary discharges	MHD - Bobrova	0.004 n(le24/cc) 5.2	
ps/fs	 Laser-plasma interaction, focusing, ionization, depletion. Injection/evolution of particle beams 	VORPAL, INF&RNO, ALaDyn, WARP, REMP Related: OSIRIS, QuickPIC, VLPL		
	FEL, radiation, beam transport	GINGER, VDSR, GPT	200000 150000 100000 50000 0 0 80 160 240 320 400	

Radiation and Scattering models

Radiation from oscillations in strong focusing fields

Used for betatron, Thomson scattering

Scattering from plasma particles, foils

Presently external to LPA simulations

For collider distances / emittances integration to LPA sim. required

Computing capabilities for high-energy physics LPAs

Length of simulation and emittance accuracy increase 1-2 orders

■ Domain size similar → weak scaling limited

Integrate models for e+ production, radiation, polarization

- Resolve quantization of radiation
- Correct statistics require increased particle number

Computing methods/requirements detail: http://www.nersc.gov/science/hpc-requirements-reviews/HEP/case-studies/

Common to many codes

Accelerator modeling science capabilities for high-energy physics LPAs

Scaling for particle number and resolution. Require:

- Common I/O libraries that achieve full bandwidth
- Parallel analysis with advanced mathematics, in-sit

Multicore/SIMD work well with PIC

Need common tools, test beds, advance notice, het. decomp.

Compute power increasing faster than bandwidth

High accuracy/long timestep methods, even at higher cost

New models for improved accuracy/ momentum fidelity

- Spectral, nodal, integrate accel. codes...
- Vlasov

Supporting capabilities for high-energy physics LPAs

Target formation

- 3D plasma formation including flow
- Heat deposition from laser
- Heat flow and extraction at kHz- MHz

Beam transport of fs, multi-kA beams

High average power lasers

Materials, optical propagation/amplification, heat flow

Compute needs driven by requirement for Accuracy, low emittance, and 100-stage sim.

Estimates based on physics needs

	Present	5 years	10 years
Computation (Mhours)	15	500	10,000
Typical cores* for production runs	5000	50,000	50,000
Maximum cores* for production	16000	250-500k	5M
Data read and written per run (TB)	3 TB	100 TB	1000 TB
Minimum I/O bandwidth	0.3 GB/sec	10 GB/sec	100 GB/sec
Shared file-system space	20 TB	600 TB	6 PB
Memory requirement per core.	0.1 GB	0.1 GB	0.2 GB

Summary

EM PIC/fluid supported exp. at GeV in few cm, ΔE^{1} , $\epsilon_{n}^{0.1}$ um

Address challenges for detailed conceptual design of a future collider

- 100's of 10 GeV stages, 0.01 um level $\varepsilon_n \rightarrow$ length, accuracy
- Integrate: e⁺, radiation, scattering, polarization...
- Add: Cooling, focusing, 3d target formation, heat flow, laser

Requires combination of:

 Scaling (incl. I/O & analytics), new physics models/solvers, new computing architectures

White paper on DOE-HEP Accelerator Modeling Science Activities

J.-L. Vay, <u>C. G. R. Geddes</u>
Lawrence Berkeley National Laboratory

A. Friedman, D. P. Grote Lawrence Livermore National Laboratory

D. L. Bruhwiler
University of Colorado

Goal (from the draft charge):

"maximizing the impact of computer modeling on the design of future particle accelerators and the development of new accelerator techniques & technologies."

This white paper presents the rationale for:

- a. strengthening and expanding programmatic activities in accelerator modeling science within DOE-HEP,
- b. increasing the community-wide coordination and integration of code development.

Importance of modeling is on the rise

with increasing:

- pressure for reducing uncertainties and cost on development, construction & commissioning of accelerator,
- accuracy of codes with better algorithms and more physics,
- computers capacity.

Resources optimization calls for balanced approach

Maximizing the overall scientific output/\$ means:

- maximizing usability of the pool of codes:
 - effectiveness (completeness, accuracy of solution),
 - efficiency (time to solution),
 - ease of use (learnability, error tolerance, versatility, etc.),
- while minimizing spending on development and support:
 - reduction of duplication,
 - increase in modularity and code interoperability.

Implies comprehensive strategy that evaluates codes

- not only based on performance, effectiveness, ease of use, levels of documentation and support,
- but also on other attributes such as modularity, flexibility, reusability, expandability and interoperability.

March toward exascale brings extra challenges

Next generation of High Performance Computers

- will provide high-accuracy integrated simulations, better design optimization, near real-time modeling, ...
- eventually leading to virtual accelerators (including virtual "control room").

But with increased heterogeneity and level of parallelism:

→ programming of next generation computers will require **new** or **reworked codes** with **new exascale-ready algorithms**.

Beam & Accelerator Modeling Science

is increasingly relevant as a programmatic activity:

- timely to go beyond code development and application in support of theory and experiments,
- development and application of accelerator algorithms/codes are very complex and specialized tasks,
- need for dedicated teams within HEP (in collab. w/ ASCR):
 - physicists + applied math + computer scientists
 - to develop codes w/ more physics on more complex machines
 - examples elsewhere of such dedicated teams:
 - MPI Garching, Germany MFE-ITER
 - Saclay, France CILEX-LPA/laser applications

Need for coordination into a cohesive tool set

Numerous beam/accelerator codes developed worldwide:

- offer wide array of options to modelers,
- but cohesion is lacking, w/ some duplication & inefficiency.

Usual paradigm (with very few exceptions):

- one developer (physicist)/topic/project
 - occasional help from computer scientist/applied math.
- leads to many small specialized codes
 - lack breadth required for integrated multi-physics modeling

Integrated multi-physics modeling calls for more cohesion

Portfolio should cover from low- to high-end computing

Supercomputers aggregate of many "off-the-shelf" units:

- each unit similar or same as on desktops or laptops
- development now often on laptops/desktops/small clusters:
 - faster turnaround for development, testing, debugging

Desktops/laptops are becoming more powerful

- will soon integrate tens of cores
- can tackle many low- to medium- range modeling

Separation between low- & high-end computing is vanishing

Need comprehensive program covering low- to high-end

Need and solution for non-disruptive integration

Significant investments of HEP into existing pool of codes:

- essential to minimize disruptions to developers and users,
- while enabling interoperability and expandability.

Python scripting language has unique attributes:

- rapid development and prototyping of scientific applications
 - on par with e.g. Maple, Matlab (which it is often supplanting)
- is expandable and couples to FORTRAN, C and C++

Ideal for coupling existing codes with minimized disruptions

- codes continue unmodified but functionalities are exposed
- → integrated tool set of unprecedented power and versatility.

Example #1: Warp and Posinst integrated in a modular "combo" package

Enabling fully self-consistent modeling of e-cloud effects: build-up & beam dynamics:

 Beyond standard practice of simulating e- cloud buildup (ECLOUD, Vorpal, etc) and then its effect on beams (Headtail, SYNERGIA, etc)

Posinst provides advanced secondary electrons model (and optional particle pusher).

Monte-Carlo generation of electrons with energy and angular dependence.

Warp's mesh refinement & parallelism provide efficiency.

Python programming language is the glue between Warp and Posinst

First direct simulation of a train of 3x72 bunches -- using 9,600 CPUs on NERSC supercomputer

• Unexpected e⁻ density rise in tails of batches between turns 0 and 800*.

Example #2: Warp & Icool combined with Python and applied to muon cooling in US MAP

Warp: particle tracking plus self fields

ICOOL: absorption

No changes to ICOOL (except skipping main routine)

Particle handling in Python – passing appropriate particles to ICOOL

Initial 2-D RZ simulation results show reduced cooling when including space-charge

Full characterization requires 3-D (in progress):

Current cooling lattice is a tapered helical line

 Simulation needs to include curvature and transverse dispersion

Summary

(a) Expanding accelerator modeling science activities

- importance of modeling is on the rise
 - better codes, computers, pressure to control cost
- resources optimization calls for balanced approach
 - emphasize also modularity, interoperability, ...
- march toward exascale brings extra challenges
 - requires new codes with new exascale-ready algorithms
- needs programmatic beam/accelerator modeling science
 - with integrated teams (phys. + math. + comput.)

Summary

(b) Increasing community-wide coordination & integration

- need for coordination into a cohesive tool set
 - integrated multiphysics modeling calls for more cohesion
- portfolio should cover from low- to high-end computing
 - separation between low- & high-end computing is vanishing
- need for non-disruptive integration
 - many existing codes used by many users for study & design
- Python stands out as solution for progressive coupling
 - codes continue unmodified but functionalities are exposed
 - → integrated tool set of unprecedented power and versatility.

Backup material

BELLA laser in operation at LBNL: 10 GeV Collider relevant module

- State of the art 1 PW, 1Hz, 40 fs
 - Commercial system with Strehl > 0.9
- Simulations show 10 GeV in 0.1-0.5 m experiments in progress

